Model of the synchronous machine in RAMSES

1 Flux-current relationships

In order to have a single model, whatever the number of rotor windings, we use "model switches", i.e. integer parameters defined as follows:
$S_{d 1}=1$ if there is a damper winding $d 1,=0$ otherwise
$S_{q 1}=1$ if there is a damper winding $q 1,=0$ otherwise
$S_{q 2}=1$ if there is a equivalent winding $q 2,=0$ otherwise

The table below shows usual models and their corresponding values of the model switches.

model	switches
detailed, round rotor	$S_{d 1}=1, S_{q 1}=1, S_{q 2}=1$
detailed, salient pole	$S_{d 1}=1, S_{q 1}=1, S_{q 2}=0$
simplified, no damper	$S_{d 1}=0, S_{q 1}=0, S_{q 2}=0$

Using the Equal-Mutual-Flux-Linkage (EMFL) per unit system, the relationship between magnetic flux linkages and currents can be written as:

$$
\begin{aligned}
& {\left[\begin{array}{c}
\psi_{d} \\
\psi_{f} \\
\psi_{d 1}
\end{array}\right]=\left[\begin{array}{ccc}
L_{\ell}+M_{d} & M_{d} & S_{d 1} M_{d} \\
M_{d} & L_{\ell f}+M_{d} & S_{d 1} M_{d} \\
S_{d 1} M_{d} & S_{d 1} M_{d} & L_{\ell d 1}+S_{d 1} M_{d}
\end{array}\right]\left[\begin{array}{c}
i_{d} \\
i_{f} \\
i_{d 1}
\end{array}\right]} \\
& {\left[\begin{array}{c}
\psi_{q} \\
\psi_{q 1} \\
\psi_{q 2}
\end{array}\right]=\left[\begin{array}{ccc}
L_{\ell}+M_{q} & S_{q 1} M_{q} & S_{q 2} M_{q} \\
S_{q 1} M_{q} & L_{\ell q 1}+S_{q 1} M_{q} & S_{q 2} M_{q} \\
S_{q 2} M_{q} & S_{q 2} M_{q} & L_{\ell q 2}+S_{q 2} M_{q}
\end{array}\right]\left[\begin{array}{c}
i_{q} \\
i_{q 1} \\
i_{q 2}
\end{array}\right]}
\end{aligned}
$$

The d and q components of the air-gap flux are given by:

$$
\begin{align*}
& \psi_{a d}=M_{d}\left(i_{d}+i_{f}+S_{d 1} i_{d 1}\right) \tag{1}\\
& \psi_{a q}=M_{q}\left(i_{q}+S_{q 1} i_{q 1}+S_{q 2} i_{q 2}\right) \tag{2}
\end{align*}
$$

From the above equations, and taking into account that the S switches can take values in $\{0,1\}$ only, one easily obtains:

$$
\begin{align*}
\psi_{d} & =L_{\ell} i_{d}+\psi_{a d} \tag{3}\\
\psi_{f} & =L_{\ell f} i_{f}+\psi_{a d} \tag{4}\\
\psi_{d 1} & =L_{\ell d 1} i_{d 1}+S_{d 1} \psi_{a d} \tag{5}\\
\psi_{q} & =L_{\ell} i_{q}+\psi_{a q} \tag{6}\\
\psi_{q 1} & =L_{\ell q 1} i_{q 1}+S_{q 1} \psi_{a q} \tag{7}\\
\psi_{q 2} & =L_{\ell q 2} i_{q 2}+S_{q 2} \psi_{a q} \tag{8}
\end{align*}
$$

Using (4, 5, 7, 8), the rotor currents are obtained from flux linkages as:

$$
\begin{align*}
i_{f} & =\frac{\psi_{f}-\psi_{a d}}{L_{\ell f}} \tag{9}\\
i_{d 1} & =\frac{\psi_{d 1}-S_{d 1} \psi_{a d}}{L_{\ell d 1}} \tag{10}\\
i_{q 1} & =\frac{\psi_{q 1}-S_{q 1} \psi_{a q}}{L_{\ell q 1}} \tag{11}\\
i_{q 2} & =\frac{\psi_{q 2}-S_{q 2} \psi_{a q}}{L_{\ell q 2}} \tag{12}
\end{align*}
$$

2 Saturation model

Let M_{d}^{u} and M_{q}^{u} be the unsaturated direct- and quadrature-axis mutual inductances, related to their corresponding saturated values M_{d} and M_{q} by:

$$
\begin{align*}
M_{d} & =\frac{M_{d}^{u}}{1+m\left(\sqrt{\psi_{a d}^{2}+\psi_{a q}^{2}}\right)^{n}} \tag{13}\\
M_{q} & =\frac{M_{q}^{u}}{1+m\left(\sqrt{\psi_{a d}^{2}+\psi_{a q}^{2}}\right)^{n}} \tag{14}
\end{align*}
$$

Replacing M_{d} by the above expression and i_{f} and $i_{d 1}$ by (9,10), respectively, the expression (1) of the d-axis air-gap flux becomes:

$$
\psi_{a d}=\frac{M_{d}^{u}}{1+m\left(\sqrt{\psi_{a d}^{2}+\psi_{a q}^{2}}\right)^{n}}\left(i_{d}+\frac{\psi_{f}-\psi_{a d}}{L_{\ell f}}+S_{d 1} \frac{\psi_{d 1}-S_{d 1} \psi_{a d}}{L_{\ell d 1}}\right)
$$

Rearranging terms yields the algebraic equation ${ }^{1}$:

$$
\begin{equation*}
\psi_{a d}\left(\frac{1+m\left(\sqrt{\psi_{a d}^{2}+\psi_{a q}^{2}}\right)^{n}}{M_{d}^{u}}+\frac{1}{L_{\ell f}}+\frac{S_{d 1}}{L_{\ell d 1}}\right)-i_{d}-\frac{1}{L_{\ell f}} \psi_{f}-\frac{S_{d 1}}{L_{\ell d 1}} \psi_{d 1}=0 \tag{15}
\end{equation*}
$$

[^0]Similarly we obtain for the q axis:

$$
\begin{equation*}
\psi_{a q}\left(\frac{1+m\left(\sqrt{\psi_{a d}^{2}+\psi_{a q}^{2}}\right)^{n}}{M_{q}^{u}}+\frac{S_{q 1}}{L_{\ell q 1}}+\frac{S_{q 2}}{L_{\ell q 2}}\right)-i_{q}-\frac{S_{q 1}}{L_{\ell q 1}} \psi_{q 1}-\frac{S_{q 2}}{L_{\ell q 2}} \psi_{q 2}=0 \tag{16}
\end{equation*}
$$

3 Reference frame

The d and q components of the stator voltage relate to their x and y components through:

$$
\binom{v_{d}}{v_{q}}=\left(\begin{array}{cc}
-\sin \delta & \cos \delta \tag{17}\\
\cos \delta & \sin \delta
\end{array}\right)\binom{v_{x}}{v_{y}}
$$

and similarly for the current:

$$
\binom{i_{d}}{i_{q}}=\left(\begin{array}{cc}
-\sin \delta & \cos \delta \tag{18}\\
\cos \delta & \sin \delta
\end{array}\right)\binom{i_{x}}{i_{y}}
$$

Eqs. $(15,16)$ become respectively:

$$
\begin{equation*}
\psi_{a d}\left(\frac{1+m\left(\sqrt{\psi_{a d}^{2}+\psi_{a q}^{2}}\right)^{n}}{M_{d}^{u}}+\frac{1}{L_{\ell f}}+\frac{S_{d 1}}{L_{\ell d 1}}\right)+\sin \delta i_{x}-\cos \delta i_{y}-\frac{1}{L_{\ell f}} \psi_{f}-\frac{S_{d 1}}{L_{\ell d 1}} \psi_{d 1}=0 \tag{19}
\end{equation*}
$$

Similarly we obtain for the q axis:

$$
\begin{equation*}
\psi_{a q}\left(\frac{1+m\left(\sqrt{\psi_{a d}^{2}+\psi_{a q}^{2}}\right)^{n}}{M_{q}^{u}}+\frac{S_{q 1}}{L_{\ell q 1}}+\frac{S_{q 2}}{L_{\ell q 2}}\right)-\cos \delta i_{x}-\sin \delta i_{y}-\frac{S_{q 1}}{L_{\ell q 1}} \psi_{q 1}-\frac{S_{q 2}}{L_{\ell q 2}} \psi_{q 2}=0 \tag{20}
\end{equation*}
$$

4 Park equations

The original Park equations are written as:

$$
\begin{align*}
v_{d} & =-R_{a} i_{d}-\omega \psi_{q} \tag{21}\\
v_{q} & =-R_{a} i_{q}+\omega \psi_{d} \tag{22}\\
\frac{d \psi_{f}}{d t} & =\omega_{N}\left(K_{f} v_{f}-R_{f} i_{f}\right) \tag{23}\\
\frac{d \psi_{d 1}}{d t} & =-\omega_{N} R_{d 1} i_{d 1} \tag{24}\\
\frac{d \psi_{q 1}}{d t} & =-\omega_{N} R_{q 1} i_{q 1} \tag{25}\\
\frac{d \psi_{q 2}}{d t} & =-\omega_{N} R_{q 2} i_{q 2} \tag{26}
\end{align*}
$$

The stator equations are transformed as follows. Eqs. (18) are used to express v_{d}, v_{q}, i_{d} and i_{q} as functions of $v_{x}, v_{y}, i_{x}, i_{y}$, while Eqs. $(3,6)$ are used to involve $\psi_{a d}$ and $\psi_{a} q$. This yields for the d axis:

$$
\begin{aligned}
v_{d} & =-R_{a}\left(-\sin \delta i_{x}+\cos \delta i_{y}\right)-\omega\left(L_{\ell} i_{q}+\psi_{a q}\right) \\
& =-R_{a}\left(-\sin \delta i_{x}+\cos \delta i_{y}\right)-\omega L_{\ell}\left(\cos \delta i_{x}+\sin \delta i_{y}\right)-\omega \psi_{a q}
\end{aligned}
$$

and finally:

$$
\begin{equation*}
0=\sin \delta v_{x}-\cos \delta v_{y}+\left(R_{a} \sin \delta-\omega L_{\ell} \cos \delta\right) i_{x}-\left(R_{a} \cos \delta+\omega L_{\ell} \sin \delta\right) i_{y}-\omega \psi_{a q} \tag{27}
\end{equation*}
$$

For the q axis we have:

$$
\begin{align*}
v_{q} & =-R_{a}\left(\cos \delta i_{x}+\sin \delta i_{y}\right)+\omega\left(L_{\ell} i_{d}+\psi_{a d}\right) \\
& =-R_{a}\left(\cos \delta i_{x}+\sin \delta i_{y}\right)+\omega L_{\ell}\left(-\sin \delta i_{x}+\cos \delta i_{y}\right)+\omega \psi_{a d} \tag{28}
\end{align*}
$$

and finally:

$$
\begin{equation*}
0=-\cos \delta v_{x}-\sin \delta v_{y}-\left(R_{a} \cos \delta+\omega_{N} L_{\ell} \sin \delta\right) i_{x}-\left(R_{a} \sin \delta-\omega L_{\ell} \cos \delta\right) i_{y}+\omega \psi_{a d} \tag{29}
\end{equation*}
$$

The rotor equations are transformed by substituting the expressions $(9,10,11,12)$ for the rotor currents, thereby obtaining:

$$
\begin{align*}
\frac{d \psi_{f}}{d t} & =\omega_{N}\left(K_{f} v_{f}-R_{f} \frac{\psi_{f}-\psi_{a d}}{L_{\ell f}}\right) \tag{30}\\
\frac{d \psi_{d 1}}{d t} & =-\omega_{N} R_{d 1} \frac{\psi_{d 1}-S_{d 1} \psi_{a d}}{L_{\ell d 1}} \tag{31}\\
\frac{d \psi_{q 1}}{d t} & =-\omega_{N} R_{q 1} \frac{\psi_{q 1}-S_{q 1} \psi_{a q}}{L_{\ell q 1}} \tag{32}\\
\frac{d \psi_{q 2}}{d t} & =-\omega_{N} R_{q 2} \frac{\psi_{q 2}-S_{q 2} \psi_{a q}}{L_{\ell q 2}} \tag{33}
\end{align*}
$$

5 Rotor motion

The equations of the rotor motion are:

$$
\begin{align*}
& \frac{1}{\omega_{N}} \frac{d \delta}{d t}=\omega-\omega_{c o i} \tag{34}\\
& 2 H \frac{d \omega}{d t}=K_{m} T_{m}-T_{e}-D\left(\omega-\omega_{c o i}\right) \tag{35}
\end{align*}
$$

in which the expression of the electromagnetic torque T_{e} is obtained as follows:

$$
\begin{align*}
T_{e} & =\psi_{d} i_{q}-\psi_{q} i_{d}=\left(L_{\ell} i_{d}+\psi_{a d}\right) i_{q}-\left(L_{\ell} i_{q}+\psi_{a q}\right) i_{d} \\
& =\psi_{a d} i_{q}-\psi_{a q} i_{d}=\psi_{a d}\left(\cos \delta i_{x}+\sin \delta i_{y}\right)-\psi_{a q}\left(-\sin \delta i_{x}+\cos \delta i_{y}\right) \tag{36}
\end{align*}
$$

6 Unknowns-equations balance

The 10 state variables are: $i_{x}, i_{y}, \psi_{a d}, \psi_{a q}, \psi_{f}, \psi_{d 1}, \psi_{q 1}, \psi_{q 2}, \delta, \omega$.
They are balanced by:

- 4 algebraic equations: $(19,20,27,29)$
- 6 differential equations: $(30,31,32,33,34,35)$

7 On the per unit system

The above model relies on the EMFL per unit system, which is the most convenient for a detailed model of the synchronous machine such as the one above. On the other hand, it is quite common to have the excitation system modelled in its own per unit system. A change of base current/voltage is thus necessary to interface both models.

While the EMFL system has been chosen for the synchronous machine, the user may use his/her own per unit system for the excitation system. The latter has to be specified through the parameter IBRATIO defined hereafter.

The base current of the field winding is $I_{f B}^{m a c}$ in the machine model and $I_{f B}^{e x c}$ in the excitation system model. The ratio of these two bases is defined as :

$$
\begin{equation*}
I B R A T I O=\frac{I_{f B}^{m a c}}{I_{f B}^{\text {exc }}} \tag{37}
\end{equation*}
$$

A given field current i_{f} (in A) has the following value in per unit on the machine base :

$$
\begin{equation*}
i_{f, p u}^{m a c}=\frac{i_{f}}{I_{f B}^{m a c}} \tag{38}
\end{equation*}
$$

and the following value in per unit on the excitation system base :

$$
\begin{equation*}
i_{f, p u}^{e x c}=\frac{i_{f}}{I_{f B}^{e x c}} \tag{39}
\end{equation*}
$$

By combining Eqs. (37, 38, 39), it is easily found that :

$$
\begin{equation*}
I B R A T I O=\frac{i_{f, p u}^{e x c}}{i_{f, p u}^{m a c}} . \tag{40}
\end{equation*}
$$

Three examples follow.

7.1 Open-circuit unsaturated machine

In this per unit system, which is most often used, $I_{f B}^{e x c}$ is the field current which produces the nominal stator voltage ($V=1 \mathrm{pu}$) when the machine rotates at its nominal speed ($\omega=1 \mathrm{pu}$) with its stator open ($i_{d}=i_{q}=0$), saturation being neglected.

In these operating conditions, the machine Park equations give :

$$
v_{d}=\psi_{q}=\psi_{a q}=0 \quad v_{q}=\psi_{d}=\psi_{a d}=M_{d}^{u} i_{f, p u}^{m a c}
$$

and, hence :

$$
V=\sqrt{v_{d}^{2}+v_{q}^{2}}=1 \quad \Rightarrow \quad M_{d}^{u} i_{f, p u}^{m a c}=1
$$

On the excitation system base :

$$
i_{f, p u}^{e x c}=1
$$

Introducing the last two relations in (40) yields :

$$
I B R A T I O=M_{d}^{u}=X_{d}^{u}-X_{\ell}
$$

7.2 Open-circuit saturated machine

In this per unit system, $I_{f B}^{e x c}$ is the field current which produces the nominal stator voltage ($V=1 \mathrm{pu}$) when the machine rotates at its nominal speed ($\omega=1 \mathrm{pu}$) with its stator open ($i_{d}=i_{q}=0$), saturation being taken into account.

In these conditions, the machine Park equations give :

$$
v_{d}=\psi_{q}=\psi_{a q}=0 \quad v_{q}=\psi_{d}=\psi_{a d}=M_{d} i_{f, p u}^{m a c}
$$

and, hence :

$$
V=\sqrt{v_{d}^{2}+v_{q}^{2}}=1 \quad \Rightarrow \quad M_{d} i_{f, p u}^{m a c}=1
$$

The saturation model (13) gives :

$$
M_{d}=\frac{M_{d}^{u}}{1+m \psi_{a d}^{n}}=\frac{M_{d}^{u}}{1+m\left(M_{d} i_{f, p u}^{m a c}\right)^{n}}=\frac{M_{d}^{u}}{1+m}
$$

On the excitation system base :

$$
i_{f, p u}^{e x c}=1
$$

Introducing the last three relations in (40) yields :

$$
I B R A T I O=\frac{M_{d}^{u}}{1+m}=\frac{X_{d}^{u}-X_{\ell}}{1+m}
$$

7.3 Saturated machine at nominal operating conditions

In this per unit system, $I_{f B}^{e x c}$ is the field current when the machine, rotating at its nominal speed ($\omega=$ 1 pu), produces its nominal active and reactive powers under its nominal stator voltage ($V=1 \mathrm{pu}$, $P=\cos \phi_{N}$ and $Q=\sin \phi_{N}$), saturation being taken into account.

[^0]: ${ }^{1}$ noting that $S_{d 1}^{2}=S_{d 1}$

